Our lab aims to developing an automated computational pipeline for peptide drug design and discovery, which involves bioactive peptide generation, prediction, and functional analysis (such as peptide toxicity).
Our lab focuses on developing computational methods to accurately annotate epigenetic modifications in whole-genome scale, and study their functions in gene regulatory network.
Our lab also focuses on the development of generic machine learning algorithms and applied them for analyzing biological sequence data and imaging data. We particularly interest in designing new representation learning architectures to automatically learn and extract the functional patterns underlying different data.
[Jul-31-2024] Congrats! Prof. Wei was promoted as an Associate Editor of the journal - Biology Methods & Protocols!
[Jun-28-2024] Congrats! Prof. Wei was promoted as an Assistant Specialty Chief Editor of the journal - Frontiers in Genetics!
[Mar-4-2024] Congrats! Prof. Wei was appointed as an Editor of journal Methods (JCR-1)!
[Sep-12-2023] Our work "Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks" has been accepted for publication on Nature Communications.
[Aug-24-2023] Congrats! Prof. Wei recieve the support by the National Science Fund for Excellent Young Scholars of China (国家优秀青年基金)!
[Mar-10-2023] Our work "ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides" has been accepted for publication on Bioinformatics.
[Feb-14-2023] Prof. Wei is now guest editting a special issue in journal 'Biology Methods and Protocols' (Oxford University Press), focusing on ' Deep learning with applications to epigenetic data analysis '. The journal would have its first Impact Factor in this Spring. Related submission is very welcome.
[Jan-29-2023] Our work "Explainable deep hypergraph learning modeling the peptide secondary structure prediction" has been accepted for publication on Advanced Science.
[Jan-18-2023] Our work "DeepBIO: An automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation, and visualization analysis" has been accepted for publication on Nucleic Acids Research.
[Nov-17-2022] Prof. Wei was named "Highly Cited Researcher" in Computer Science by Clarivate Analytics 2021!
[Oct-3-2022] Our work " iDNA-ABF: multi-scale deep biological language learning model for the interpretable prediction of DNA methylations" has been accepted for publication on Genome Biology.
[Jun-24-2022] Prof. Wei was appointed as the Editorial Board Member of "Biology Methods and Protocols" (Oxford University Press).
[May-18-2022] Our work " Predicting protein-peptide binding residues via interpretable deep learning" has been accepted for publication on Bioinformatics.
[Apr-26-2022] Our collaborative work "Recent advances in the prediction of subcellular localization of proteins and related topics." has been accepted for publication on Frontiers in Bioinformatics.
[Apr-20-2022] Our work "scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods" has been accepted for publication on Nucleic Acids Research.
WeiLab 2021 by WEIlab